1. **Problem:** Let $\{e_n\}_{n=1}^{\infty}$ be an orthonormal basis of a Hilbert space \mathcal{H} . Prove that for each $x \in \mathcal{H}$

$$\lim_{m \to \infty} \langle x, e_m \rangle = 0$$

Solution: Since $\{e_n\}_{n=1}^{\infty}$ is an orthonormal basis of the Hilbert space \mathcal{H} , for every $x \in \mathcal{H}$ from Parseval's Identity we have:

$$\sum_{n=1}^{\infty} |\langle x, e_m \rangle|^2 = \parallel x \parallel^2 < \infty$$

Hence

 $\lim_{m \to \infty} \langle x, e_m \rangle = 0.$

2. **Problem:** Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be a pair of equivalent norms on the linear space X. Prove that $\|\cdot\|_1$ and $\|\cdot\|_2$ yields equivalent norms on the set of bounded linear operators on X.

Solution: Since $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent norms on the linear space X, there exists constants $\alpha_1, \beta_1 > 0$ such that $\alpha_1 \| x \|_1 \le \| x \|_2 \le \beta_1 \| x \|_1$. Let T be a bounded linear operator on X. Also there exists constants $\alpha_2, \beta_2 > 0$ such that $\alpha_2 \| Tx \|_1 \le \| Tx \|_2 \le \beta_2 \| Tx \|_1$. Thus we have:

 $\alpha_2 \parallel Tx \parallel_1 \le \parallel Tx \parallel_2 \le \parallel T \parallel_2 \parallel x \parallel_2 \le \parallel T \parallel_2 \beta_1 \parallel x \parallel_1.$

Hence $||T||_1 \leq \frac{\beta_1}{\alpha_2} ||T||_2$. Interchanging the role of $||\cdot||_1$ and $||\cdot||_2$, we get the other direction.

3. **Problem:** Let X and Y be two Banach spaces over \mathbb{C} and $\phi : X \times Y \to \mathbb{C}$ be a bilinear map and continuous in each variable separately. Prove that ϕ is jointly continuous.

Solution: Let $\phi_x : Y \to \mathbb{C}$ and $\phi^y : X \to \mathbb{C}$ is defined by $\phi_x(y) = \phi(x,y) = \phi^y(x)$. Let $E = \{y \in Y : || y || \le 1\}$. Now

$$\| \phi^{y}(x) \| = \| \phi(x, y) = \| \phi_{x}(y) \| \le \| \phi_{x} \| \| y \| \le \| \phi_{x} \|.$$

So, { $\parallel \phi^y(x) \parallel$ } is bounded. Thus { $\parallel \phi^y \parallel$: $y \in E$ } is bounded by UBP. Let $\parallel \phi^y \parallel \leq \alpha$. Let $x \in X, y \in Y$. Take $z = \frac{y}{\|y\|}$. Then $z \in E$. So, $\parallel \phi(x, z) \parallel = \parallel \phi^z(x) \parallel \leq \parallel \phi^z \parallel \parallel x \parallel \leq \alpha \parallel x \parallel$. Now note that $\parallel \phi(x, z) \parallel = \frac{1}{\|y\|} \parallel \phi(x, y) \parallel$. So $\parallel \phi(x, y) \parallel = \parallel y \parallel \parallel \phi(x, z) \parallel \leq \alpha \parallel x \parallel \parallel y \parallel$. To check the joint continuity of ϕ , let $(x_n, y_n) \to (x, y)$, i.e. $x_n \to x, y_n \to y$. Note that $\phi(x_n, y_n) - \phi(x, y_n) = \phi(x_n - x, y_n)$ and $\phi(x, y_n) - \phi(x, y) = \phi(x, y_n - y)$. Hence $\parallel \phi(x_n, y_n) - \phi(x, y) \parallel \leq \parallel \phi(x_n - x, y_n) \parallel + \parallel \phi(x, y_n - y) \parallel \leq \alpha \parallel x_n - x \parallel \parallel y_n \parallel + \alpha \parallel x \parallel \parallel y_n - y \parallel \to 0$.

4. **Problem:** Let \mathcal{F} be a proper finite dimensional subspace of a normed linear space X. Prove that there exists an unit vector $x \in X$ such that

$$||x - y|| \ge 1 \quad (\forall y \mathbf{i} \mathcal{F}).$$

Solution: Choose $x \in X$ with $x \notin \mathcal{F}$. Let $d = d(x, \mathcal{F})$. Let $d = d(x, \mathcal{F}) = \inf\{|| x - y ||: y \in \mathcal{F}\}$. Let, r = || x || + d + 1, and $S = \{y \in Y : || y || \le r\}$. Then S is a closed and bounded subset of the finite dimensional space \mathcal{F} and hence is compact. The function $\phi : \mathcal{F} \to \mathbb{R}$ defined by

$$\phi(y) = \parallel y - x \parallel,$$

is real and continuous on \mathcal{F} . Hence there is a $y_0 \in S$ such that $\phi(y_0) \leq \phi(y)$; for all $y \in S$. Again there is $y_1 \in \mathcal{F}$ such that $||x - y_1|| < d + 1$. Then, $||y_1|| \leq ||y_1 - x|| + ||x|| < d + 1 + ||x|| = r$. Hence $y_1 \in S$ and so

$$\phi(y_0) \le \phi(y_1) = \parallel y_1 - x \parallel < d + 1.$$

Let $y \in \mathcal{F}$. If $y \notin S$, then

$$||x|| + d + 1 = r < ||y|| \le ||y - x|| + ||x||.$$

Hence in this case we get

$$\phi(y_0) < d+1 < || y - x ||.$$

On the other hand if $y \in S$, then

$$\phi(y_0) \le \phi(y) = \parallel y - x \parallel y$$

Thus $||y_0 - x|| = \inf\{||x - y||: y \in \mathcal{F}\} = d$. If d = 0, then $x = y_0 \in Y$, which is not true. Therefore d > 0. Let $x_1 = \frac{x - y_0}{d}$, then $||x_1|| = 1$ and for all $y \in \mathcal{F}$,

$$||x_1 - y|| = ||\frac{1}{d}(x - z)|| \ge 1$$

since $z = y_0 + dy \in Y$. This also implies that $d(x_1, \mathcal{F}) = 1$, since $||x_1 - 0|| = 1$ and $0 \in Y$.

5. **Problem:** Prove or disprove (with justification): $T : c_{00} \to \mathbb{C}$ defined by $T(\{a_n\}) = \sum_n a_n$ is a bounded linear functional (w.r.t. usual sup norm).

Solution: Consider $x_n \in c_{00}$ defined by

$$\begin{aligned} x_n(j) &= 1 \quad \text{for} \quad 1 \le j \le n \\ &= 0 \quad \text{for} \quad j > n. \end{aligned}$$

Then $||x_n||_{\infty} = 1$, and $T(\{x_n\}) = n$. If T is continuous then there exists $\alpha > 0$ such that

$$|T(\{x_n\})| \le \alpha \parallel x_n \parallel_{\infty} = \alpha$$

that is, $n \leq \alpha$, for all n. The above implies that T is not continuous.

6. **Problem:** Let T be a linear map on a Hilbert space \mathcal{H} and

$$\langle Tx, y \rangle = \langle x, Ty \rangle,$$

for all $x, y \in \mathcal{H}$. Prove that T is bounded.

Solution: From a special case of the uniform boundedness principle we have: If \mathcal{H} is a Hilbert space, $E \subset \mathcal{H}$, and for every $y \in \mathcal{H}$; there exists a constant $\alpha(y) > 0$, such that

$$|\langle x, y \rangle| \le \alpha(y); \quad \forall x \in E,$$

then $\sup\{||x||: x \in E\} < \infty$. Now, take $E = \{Tx : ||x|| = 1\}$ and observe that for every $y \in \mathcal{H}$

$$|\langle Tx, y \rangle| = |\langle x, Ty \rangle| \le ||x|| ||Ty|| \le ||Ty||$$

Hence by the first statement T is bounded.

7. **Problem:** Let S be a subspace of a Hilbert space \mathcal{H} . Prove that

$$(\mathcal{S}^{\perp})^{\perp} = \overline{\mathcal{S}}.$$

Solution: Let $Y = \overline{S}$. First we shall show that $S^{\perp} = Y^{\perp}$. Since $S \subset Y$, we have $Y^{\perp} \subset S^{\perp}$. Conversely let, $x \in S^{\perp}$. We need to show that $x \in Y^{\perp}$. Take any $y \in Y$, then there exists $\{z_n\} \in S$ such that $z_n \to y$. So $\langle x, z_n \rangle \to \langle x, y \rangle$. But $\langle x, z_n \rangle = 0$ and hence $\langle x, y \rangle = 0$. Thus $S^{\perp} \subset Y^{\perp}$ and hence $S^{\perp} = Y^{\perp}$. Since Y is a closed subspace of a Hilbert space; so Y is complete. Hence $(Y^{\perp})^{\perp} = Y$. As a result we have

$$(\mathcal{S}^{\perp})^{\perp} = \overline{\mathcal{S}}.$$

8. **Problem:** Let A be a σ - finite measure space and $\phi \in L^{\infty}(A)$. Prove that the multiplication operator M_{ϕ} has bounded inverse iff there exists c > 0 such that

 $|\phi(x)| \ge c$

 $(\forall x \in A \quad \text{a.e}).$

Solution: See Problem 67 in Halmos - A Hilbert space Problem Book.